Nomenclature of α -Amino Acids (Recommendations, 1974)¹

IUPAC Commission on the Nomenclature of Organic Chemistry² and IUPAC-IUB Commission on Biochemical Nomenclature³

CONTENTS

Introduc	tior	1	44
Recomm	enc	lations	
2AA-1	_	The Common α-Amino Acids	449
		Trivial Names of the Common α -	
•	•••		449
1	2	Coining Trivial Names	449
		Ionic Forms	450
			450
		Aldehydes and Alcohols	451
		Amides, Anilides, and Analogous Derivatives	
		Esters and Salts	451
		Use of the Prefix "homo"	451
2AA-2		Formation of Semisystematic Names of α -	
		Amino Acids	45
2	.1.		451
			451
			451
			452
2AA-3		Configuration at the \alpha-Carbon Atom	452
			452
3	.2.	Position of Prefix and Exceptions	452
			452
			452
		The Sequence Rule	452
			452
2AA-4		Optically Inactive \alpha-Amino Acids	453
			453
4	.2.	Use of meso	453
2AA-5		Configuration at Chiral Centers	
			453
5	.1.	Use of Sequence Rule	453
			453
5	.3.	Use of cis and trans	453
5	.4.	Use of allo	453
2AA-6		Optical Rotation	454
			454
7	.1.	Construction of Names	454
7	.2.	Use of Prefixes in Peptide Names	454
7	.3.	Order of Names of Residues	454
7	.4.	Names of Simple Polymers of α -Amino Acids	454
			454
		Naturally Occurring α-Amino Carboxylic	
		Acids Bearing Unique Trivial Names	455
Appendix	В.	Trivially Named Di(α-amino acids)	
		Other than Peptides	461

Introduction

The traditional and well-known names of the common α -amino acids were, in general, given to them by their discoverers and bear no relationship to their chemical struc-

tures (1, 2). The modification of these names to accommodate derivatives and to designate configuration was first codified by the former IUPAC Commission on the Nomenclature of Biological Chemistry in 1947 (3) and revised in 1960 (4). Further proposals for the revision of the rules for naming α -amino acids with two centers of chirality appeared in 1963 (5). Recommendations for symbols of amino-acid residues in peptide sequences, together with rules for their use, were made by the present IUPAC-IUB Commission on Biochemical Nomenclature (CBN)³ (6, 7).

The present revision of the α -Amino-acid Rules brings the nomenclature of these substances into conformity with the IUPAC Rules for the Nomenclature of Organic Chemistry (8, 9). The revision was formulated by a committee composed of H. B. Vickery (convenor), K. Blaha, L. Fowden, W. Klyne, P. M. Scopes, and S. Veibel, with assistance from W. E. Cohn, J. S. Fruton, G. W. Kenner, P. O. Larsen, R. C. Sheppard, and G. T. Young. CNOC² and CBN³ are grateful to these individuals for their efforts.

Recommendations

2AA-1. The Common α-Amino Acids

1.1. Trivial Names of the Common α -Amino Acids

The trivial names of the α -amino acids that are commonly found in proteins and are represented in the genetic code, together with their symbols, systematic names (8), and formulas, are given in Table I.

1.2. Coining New Trivial Names

- (a) The coining of trivial names for newly discovered α -amino acids should be avoided in the absence of compelling reasons.
- (b) A new α -amino acid should be named, wherever possible, as a derivative of a well-known α -amino acid (see Recommendation 2AA-2). The configuration, when known, should be indicated in strict conformity with Recommendation 2AA-3.
- (c) Where names so constructed are unduly cumbersome and the substance is of sufficient importance, a new trivial name may be coined. This name should include either some element of its chemical structure or a reference to its biological origin. Attention should be paid to derivations from

² Composition: N. Lozac'h (Chairman), S. P. Klesney (Secretary), K. Bláha, L. C. Cross, H. Grünewald, W. Klyne, K. L. Loening, J. Rigaudy. Associate Members: K. Hirayama, W. H. Powell, S. Veibel, F. Vögtle.

³ Composition: O. Hoffmann-Ostenhof (Chairman), W. E. Cohn (Secretary), A. E. Braunstein, B. L. Horecker, W. B. Jakoby, P. Karlson, B. Keil, W. Klyne, C. Liébecq, E. C. Webb.

¹ Approved by the authoring Commissions in 1974 and published by permission of IUPAC and IUB. Comments and suggestions for future revisions may be sent to any member of Commissions listed below. Reprints are available from W. E. Cohn, Director, NRC Office of Biochemica! Nomenclature, Biology Division, Oak Ridge National Laboratory, Box Y, Oak Ridge, Tennessee, U.S., 37830.

Table I: α-Amino Acids under Direct Genetic Control

Trivial Name	Symbol	Systematic (and Semisystematic) Name	Formula
Alanine	Ala	2-Aminopropionic acid	CH ₃ CH(NH ₂)COOH
Arginine	Arg	2-Amino-5-guanidinovaleric acid	H ₂ NC(NH)NH(CH ₂) ₃ CH(NH ₂)COOH
Asparagine	Asn	2-Aminosuccinamic acid	H ₂ NCOCH ₂ CH(NH ₂)COOH
Aspartic acid	Asp	Aminosuccinic acid	HOCOCH ₂ CH(NH ₂)COOH
Cysteine	Cys	2-Amino-3-mercaptopropionic acid (3-Mercaptoalanine)	HSCH ₂ CH(NH ₂)COOH
Glutamine	Gln	2-Aminoglutaramic acid	$H_2NCO(CH_2)_2CH(NH_2)COOH$
Glutamic acid	Glu	2-Aminoglutaric acid	HOCO(CH ₂) ₂ CH(NH ₂)COOH
Glycine	Gly	Aminoacetic acid	CH ₂ (NH ₂)COOH
Histidine	His	lpha- Amino- 1 H - imidazole- 4- propionic acid (1 H - Imidazole- 4- alanine)	CH=OCH,CH(NH,)COOH NH N CH
Isoleucine	Ile	2-Amino-3-methylvaleric acid	C ₂ H ₅ CH(CH ₃)CH(NH ₂)COOH
Leucine	Leu	2-Amino-4-methylvaleric acid	(CH ₃) ₂ CHCH ₂ CH(NH ₂)COOH
Lysine	Lys	2,6-Diaminohexanoic acid	$H_2N(CH_2)_4CH(NH_2)COOH$
Methionine	Met	2-Amino-4-(methylthio)butyric acid	$CH_3S(CH_2)_2CH(NH_2)COOH$
Phenylalanine ^a	Phe	2-Amino-3-phenylpropionic acid	C ₆ H ₅ CH ₂ CH(NH ₂)COOH
Proline ^a	Pro	2-Pyrrolidinecarboxylic acid	СН ₂ —СН ₂ СН ₂ _ СНСООН . ХН
Serine	Ser	2-Amino-3-hydroxypropionic acid	HOCH ₂ CH(NH ₂)COOH
Threonine	Thr	2-Amino-3-hydroxybutyric acid	CH ₃ CH(OH)CH(NH ₂)COOH
Tryptophan ^a	Trp	2-Amino-3-(3-indolyl)propionic acid (α -Amino-1 H -indole-3-propionic acid)	CH ₂ CH(NH ₂)COOH
Tyrosine ^a	Tyr	2-Amino-3-(4-hydroxyphenyl)propionic acid [3-(4-Hydroxyphenyl)alanine]	HO—CH ₂ CH(NH ₂)COOH
Valine	Val	2-Amino-3-methylbutyric acid	(CH ₃) ₂ CHCH(NH ₂)COOH

^a See Sections 2.2-2.4 for numbering.

Greek or Latin roots (but not both in the same name) and ease of pronunciation. However, where a new trivial name is introduced or used, it is essential that a correctly constructed systematic or semisystematic name be stated at least once in each paper.

A number of existing trivial names are given in Appendixes A and B.

1.3. Ionic Forms

When it is desirable to mention or stress the ionic nature of an α -amino acid, the three kinds of ions possible may be indicated by adding the terms "anion," "cation," or "amphion" (alternatively, "dipolar ion") to the trivial name of the α -amino acid.

Examples:

glycine anion NH₂CH₂COOglycine cation NH₃+CH₂COOH
glycine amphion or
glycine dipolar ion NH₃+CH₂COO-

1.4. Names of Radicals and Residues (8)

1.4.1. The acyl radical of an α -amino acid is a structure that lacks the hydroxyl of the carboxyl group (H₂NCHRCO-). The names of such radicals are formed by replacing the ending "ine" (or "an" in tryptophan) by "yl."

Examples (8): alanyl, arginyl, leucyl, tryptophyl, tyrosyl, valyl, etc. "Cysteinyl" is used instead of "cysteyl," because of potential confusion with the radical of cysteic acid. "Cystyl" is the diacyl radical of cystine and "half-cystyl" is the acyl radical of cysteine lacking also the H of its SH group.

- 1.4.2. The monoacyl radicals of the dicarboxylic acids, $HOOC(CH_2)_nCHNH_2CO-$ and $-OC(CH_2)_nCHNH_2-$ COOH, are designated α and β -aspartyl (α and γ -glutamyl), respectively (8). The diacyl radicals are aspartoyl and glutamoyl (8). The acyl radicals of asparagine and glutamine are termed asparaginyl and glutaminyl, respectively (8).
- 1.4.3. α -Amino-acid residues are structures that lack a hydrogen atom of the amino group (-NHCHRCOOH) or that lack both a hydrogen atom of the amino group and the hydroxyl moiety of the carboxyl group (-NHCHRCO-); all units of a polypeptide chain except for the amino-terminal acyl radical are therefore amino-acid residues. Residues are named from the trivial name of the α -amino acid (omitting the word "acid" from aspartic acid and glutamic acid). Examples: glycine residue, glutamic residue.
- 1.4.4. In many cases, biochemical names (see Appendixes) require that radicals formed at a locus other than the carboxyl group of an amino acid be named in terms of the parent amino acid and appear as prefixes rather than roots of the final names.⁴ Such "radical-prefix" names representing radicals derived by loss of hydrogen from a nitrogen atom are formed by substituting o- for the terminal -e in those names ending in -e (by analogy with amine \rightarrow amino, etc.); e.g., alanino, valino, tyrosino. Tryptophan adds the -o directly, and the two dicarboxylic acids become asparto and glutamo. When there is more than one nitrogen atom in the

⁴ In this document, a number of special procedures are used to form names based on the approved names of α -amino acids in an attempt to indicate important biochemical relationships. These procedures, yielding such names as alaninol (1.5), N^6 -lysino (1.4.4), norleucin-6-yl (1.4.5), etc., should not be extended to other areas.

amino acid, a locant of the form N^x must precede the radical name. Examples: N^6 -lysino (see Appendix B2); N^{ω} -arginino; N^5 -glutamino; π -histidino (see 2.4).

1.4.5.4 Radicals formed by loss of a hydrogen atom from carbon, sulfur, or oxygen atoms (excepting the carboxylic oxygen atoms) are named by substituting -x-yl for the terminal -e, x being the locant of the atom from which the hydrogen atom has been lost (examples: norleucin-6-yl, cystein-S-yl, threonin-O³-yl; re norleucin-6-yl, see Appendix B2; exception: asparagine forms aspartamid-x-yl, glutamine forms glutamid-x-yl) or adding -x-yl to aspartic, glutamic, and tryptophan (examples: aspartic-2-yl, tryptophan-1-yl; see 2.3).

1.5. Aldehydes and Alcohols⁴

Aldehydes and alcohols obtained by successive stages of reduction of the carboxyl group of α -amino acids are named by replacing the final "e" of a trivial name ending in "ine" (or the "ic acid" of aspartic and glutamic acids) with, respectively, the endings "al" and "ol."

Examples (RCHNH₂CHO): alaninal, leucinal, lysinal, serinal, aspart-1-al, glutaminal, etc. (RCHNH₂CH₂OH): alaninol, leucinol, lysinol, serinol, aspart-1-ol, glutaminol, etc.

The aldehyde and alcohol derivatives of tryptophan take the names tryptophanal and tryptophanol.

1.6. Amides, Anilides, and Analogous Derivatives (H2NCHRCONHR')

Amides, anilides, and analogous derivatives of α -amino acids are structures in which the hydroxyl group of the carboxyl has been replaced by an amino, anilino, or analogous group. They may be named by replacing the final "e" of the trivial amino-acid name by the word "amide," "anilide," etc., or by adding these words to the name of the amino acid. Thus, glycinamide, argininamide, leucinanilide, etc.; glycine amide, leucine anilide, etc.

Note that the β -amide of aspartic acid and the γ -amide of glutamic acid have specific trivial names, asparagine and glutamine. Their α -amides are named aspartic α -amide and glutamic α -amide, or isoasparagine and isoglutamine.

1.7. Esters and Salts

The names of esters of amino acids bearing trivial names are derived by replacing "ic acid" or the terminal "e" with "ate" (or adding "ate" to tryptophan) and prefixing these with the radical of the alcohol in the usual fashion.

Examples:

diethyl glutamate5methyl cysteinateα-ethyl glutamate5methyl prolinateethyl glutaminate5methyl tryptophanate

Salts of α -amino acids with bases are named in similar fashion (e.g., sodium tryptophanate, monosodium glutamate). Salts of α -amino acids with acids are named by adding the name of the associated acid to the name of the amino acid (e.g., glycine hydrochloride, histidine hydrochloride, lysine hydrochloride) or by using the "'ium" form (e.g., glycinium chloride, histidinium chloride, lysinium chloride).

It is permissible and customary to use the "ate" form without naming the cation when discussing the role of amino acids in biochemical reactions or where the co-ion is unimportant, unknown, or a mixture of ions. The "ate" form is preferred when the name of an amino acid is used adjectivally (e.g., "glutamate-dependent reaction" instead of "glutamic-acid-dependent reaction").

1.8. Use of the Prefix "homo"

An α -amino acid that is otherwise similar to a common one (Table I) but that contains one more methylene group in the carbon chain may be named by prefixing "homo" to the name of that common α -amino acid. (Examples are included in Appendix A, alphabetized under "H").

2AA-2. Formation of Semisystematic Names of α -Amino Acids

Semisystematic names of substituted α -amino acids are formed according to the general principles of organic nomenclature (8), by attaching the name of the substituting radical to the trivial name of the amino acid. The position of substitution is preferably indicated by numerical locants, although Greek letters are frequently used, especially in the older literature.

2.1. Numbering

In the aliphatic α -amino acids, the carbon atom of the carboxyl group adjacent to the carbon atom carrying the amino group is numbered 1. Where Greek letters are used, the carbon atom adjacent to the carbon atom 1 and carrying the amino group is designated alpha (α) . Example:

lysine
$$H_2N_c^6H_2_b^5H_2_V^4H_2_B^3H_2_C^2H(NH_2)^1COOH$$

2.2. Proline

The carbon atoms in proline are numbered as in pyrrolidine, the nitrogen atom being numbered 1, and proceeding toward the carboxyl group.

2.3. Aromatic Rings

The carbon atoms in the aromatic rings of phenylalanine, tyrosine, and tryptophan are numbered as in systematic nomenclature, with 1 (or 3, for tryptophan) designating the carbon atom holding the aliphatic chain. The carbon atoms of the latter are designated α (for the carbon atom attached to the amino and carboxylic groups) and β (for the atom attached to the ring system).

Note: This numbering system should also be used for the decarboxylated products. (e.g., for tryptamine).

H₂C₄
$$\xrightarrow{3}$$
 CH₂

NH

proline

phenylalanine

HO $\xrightarrow{4}$ $\xrightarrow{3}$ $\xrightarrow{2}$ CHCOOH

tyrosine

tyrosine

 $\xrightarrow{5}$ $\xrightarrow{6}$ CH₂CH(NH₂)COOH

 $\xrightarrow{5}$ $\xrightarrow{6}$ $\xrightarrow{6}$ CH₂CH(NH₂)COOH

 $\xrightarrow{5}$ $\xrightarrow{6}$ $\xrightarrow{7}$ $\xrightarrow{7}$

⁵ Note that glutamate refers to glutamic acid whereas glutaminate refers to glutamine.

2.4. Histidine

The nitrogen atoms of the imidazole ring of histidine are denoted by pros ("near," abbreviated π) and tele ("far," abbreviated τ) to show their position relative to that of the side chain.⁶ The carbon atom between the two imidazole nitrogen atoms is numbered 2 (as in imidazole), and the carbon atom adjacent to the τ nitrogen atom is numbered 5. The carbon atoms of the aliphatic chain are designated α and β , as in 2.1 and 2.3 above.

Note: this numbering should also be used for the decarboxylation product, histamine, and substituted histidines (e.g., anserine, carnosine, homocarnosine, ophidin, thiolhistidine; see Appendix B) utilizing these trivial names.

2AA-3. Configuration at the α -Carbon Atom

3.1. Use of D and L

The absolute configuration at the α -carbon atom of the α -amino acids is designated by the prefixed small capital letters D or L to indicate a formal relationship to D- or L-serine and thus to L- or D-glyceraldehyde. An additional symbol (*i.e.*, a plus or minus sign in parentheses) to denote the direction of rotation is not necessary although it may be inserted where it is essential or desirable to emphasize the direction of rotation under specified conditions. (See 2AA-6.)

Examples: L-leucine, D-valine, L-asparagine, L-canavanine, L(+)-alanine.

3.2. Position of Prefix and Exceptions

In naming α -amino acids as derivatives of substances that have well-known trivial names, the prefix L or D is placed immediately before the trivial name of the parent amino acid and set off by hyphens.

Examples: 4-methyl-L-glutamic acid, S-methyl-L-cysteine, 4-hydroxy-L-proline, 3,5-diiodo-L-tyrosine, 5-hydroxy-L-lysine.

Note: Admissible exceptions to this rule are L-phenylalanine, L-hydroxyproline, and L-hydroxylysine, but only in general biochemical writing in a context such that the position of substitution is well understood. Note further that in the names of optically active derivatives of glycine, such as L-2-phenylglycine, the prefix must be placed before the name of the substituent as glycine itself is achiral. In the names of salts, esters and other derivatives (1.7), including peptides (2AA-7), the prefix is placed immediately before the trivial name of the parent acid or its radical.

Examples: L-histidine monohydrochloride monohydrate, cupric L-aspartate, D-ornithine dihydrochloride, N-acetyl-L-tryptophan, diethyl D-glutamate, 3-hydroxy-D_s-glutamic acid (see 3.4), N⁶-methyl-L-lysine.

Other semisystematic names involving α -amino-acid configurations are treated similarly.

Example: S-(D-2-amino-2-carboxyethyl)-D-homocysteine (D-cystathionine).

3.3. Omission of Prefix

The prefix may be omitted where the amino acid is stated to be or is obviously the enantiomer derived from a protein source and is thus assumed to be L. It may also be omitted where the amino acid is synthetic and not resolved and is therefore, save in rare exceptional cases, an equimolecular

mixture of the enantiomers; or in a general statement that is true for either enantiomer or for any mixture of these; or in symbolic representations (6, 7).

3.4. Subscripts to D and L

Where confusion is possible between the use of the capital letter prefix for the configuration of the α -carbon atom in amino-acid nomenclature and for that of the highest numbered asymmetric carbon atom in carbohydrate nomenclature (13), a subscript is added to the small capital letter prefix. Where the prefix is used in the amino-acid sense, the subscript s is added; where the prefix is used in the carbohydrate sense, the subscript g is added. These subscripts (lower-case Roman letters) refer, respectively, to serine, the fundamental substance to which α -amino acids that bear structural resemblance to the carbohydrates can be formally related, and to glyceraldehyde, the fundamental substance to which the configuration of the carbohydrates is formally related.

Examples: L_s -threonine, for which the synonym in carbohydrate nomenclature is 2-amino-2,4-dideoxy- D_g -threonic acid; D_s -threonine, for which the synonym is 2-amino-2,4-dideoxy- L_g -threonic acid; L_s -allothreonine, for which the synonym is 2-amino-2,4-dideoxy- L_g -erythronic acid; D_s -allothreonine, for which the synonym is 2-amino-2,4-dideoxy- D_g -erythronic acid.

Note that the subscripts are essential only in discussions where both amino-acid names and those of carbohydrate derivatives occur. Nevertheless, they are highly desirable in naming α -amino acids that possess more than one center of chirality. (See 5.2.)

3.5. The Sequence Rule

A more general system of stereochemical designation, which is especially convenient for comparisons with other series of compounds, is the "Sequence Rule" of Cahn, Ingold, and Prelog (9-12). A full discussion of this system (the RS system) of naming chiral substances is to be found in the references cited.

Note that almost all of the enantiomers of the α -amino acids derived from proteins and most of the α -amino acids and their derivatives found in plant or animal tissues have the α -L configuration, which corresponds in almost all cases to S in the Sequence Rule convention. The most important exceptions are L-cystine and L-cysteine and their derivatives, which are R. A few α -amino acids of the α -D configuration, which generally corresponds to R in the Sequence Rule convention (except D-cystine, D-cysteine, and related compounds, which are S), are found among the products of hydrolysis of certain antibiotic polypeptides, although rarely elsewhere.

3.6. Amino Acids Derived from Amino Sugars

Amino acids derived from amino sugars containing five or more carbon atoms are named in conformity with the

the groups are in the rectus(R) or clockwise order, thus (2R)-cysteine.

⁶ This recommendation (6) arose from the fact that two different systems of numbering the atoms in the imidazole ring of histidine have been used for so long a time (biochemists generally numbering as 1 the nitrogen atom adjacent to the side chain and organic chemists designating it as 3).

 $^{^7}$ In L-cysteine, the α -carbon atom bears the four groups NH₂, CH₂SH, COOH, and H. They fall in this order of precedence as the atomic number of sulfur is greater than that of oxygen and, if L-cysteine is written in "steering-wheel" fashion,

Rules of Carbohydrate Nomenclature (13) or with a recommended trivial name.

Examples: (1) D_g -glucosaminic acid for 2-amino-2-deoxy- D_g -gluconic acid, the α -carbon atom of which has the configuration of that in D-serine, and in which carbon atom 5, the highest numbered chiral center, also has the D configuration; (2) D_g -mannosaminic acid for 2-amino-2-deoxy- D_g -mannonic acid, the α -carbon atom of which has the configuration of that in L-serine, but in which carbon atom 5 has the D configuration. The subscript g may be omitted except where confusion with the use of the small capital letter prefixes in amino-acid nomenclature is possible.

Note: the structures of α -amino acids to show configurational relationships may be drawn in several ways. In Fischer-style formulas, the carbon chain is written vertically with the carboxyl group at the top. With L-amino acids, the amino group is shown at the left, with D-amino acids at the right.

Alternatively, heavy and dotted lines may be used to represent bonds projecting respectively in front of and behind the plane of the paper.

2AA-4. Optically Inactive α -Amino Acids

4.1. Use of DL or ±

The optically inactive mixture or racemic compound of the enantiomers is designated by the prefix DL (no comma) or by the plus and minus sign (\pm) in parentheses.

Examples: DL-leucine, (±)-leucine.

4.2. Use of meso

The prefix *meso* or its abbreviation *ms* in lower case italic letters is used to denote those α -amino acids and derivatives of α -amino acids that are optically inactive because of internal compensation.

Examples: meso-lanthionine, ms-cystine.

2AA-5. Configuration at Chiral Centers Other than α -C

5.1. Use of Sequence Rule

In general, the Sequence Rule symbols are used to designate configuration, where known, at centers other than α -C. The configuration at α -C is customarily designated by D or L placed immediately before the trivial name.

Examples: (3R)-L_s-threonine, (3S)-L_s-isoleucine, (4S)-4-hydroxy-L_s-proline (see 5.3).

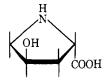
However, those who prefer not to use two different systems to indicate configuration in the same name may convey the same information as in the following examples: (2S,3R)-threonine, (2S,3S)-isoleucine, (2S,4S)-hydroxy-proline.

5.2. Use of Carbohydrate Prefixes

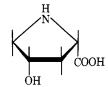
Alternatively, names of α -amino acids having two or more chiral centers and in which a hydrogen atom is attached to each center may be formed with use of the prefixes of carbohydrate nomenclature⁸ (13) to define the config-

urational relationships. The small capital letter prefixes L_s or D_s are placed immediately before the trivial name of the parent α -amino acid or its radical. The subscripts must invariably be inserted in order to show that the capital letter prefix refers to the configuration of the α -carbon atom (carbon atom 2). The carbohydrate-name prefix is italicized in print and is not capitalized even at the beginning of a sentence.

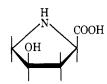
Examples:

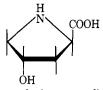

erythro-4-hydroxy-L_s-proline (from proteins)
threo-4-hydroxy-L_s-proline (otherwise allo-4-hydroxy-L_s-proline)
erythro-L_s-isoleucine (from proteins)
threo-L_s-isoleucine (otherwise allo-L_s-isoleucine)
erythro-5-hydroxy-L_s-lysine (from proteins)
threo-5-hydroxy-L_s-lysine (otherwise allohydroxy-L_s-lysine)
ribo-3,4-dihydroxy-L_s-glutamic acid
xylo-3,4-dihydroxy-L_s-glutamic acid
lyxo-3,4-dihydroxy-L_s-glutamic acid

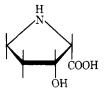
Note that the *ribo* and xylo isomers belong to the L_g series, the *arabino* and lyxo isomers to the D_g series.

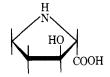

Note further that the relative configuration between the α center and the second center of chirality is already implied in the trivial name threonine.

5.3. Use of cis and trans


The amino acids 4-hydroxy-L-proline and 3-hydroxy-L-proline and analogous substituted prolines may also be named as follows (cf. 3.2, 5.1, 5.2)


trans -4-hydroxy-L-proline 4-hydroxy-L-proline erythro-4-hydroxy-L_s-proline


cis-4-hydroxy-L-proline allo-4-hydroxy-L-proline threo-4-hydroxy-L_q-proline


cis -4-hydroxy-D-proline allo-4-hydroxy-D-proline threo -4-hydroxy-D_s-proline

trans-4-hydroxy-p-proline 4-hydroxy-p-proline erythro-4-hydroxy-p_s-proline

cis -3-hydroxy-L-proline allo-3-hydroxy-L-proline threo -3-hydroxy-L_e-proline

trans-3-hydroxy-L-proline 3-hydroxy-L-proline erythro-3-hydroxy-L_s-proline

Cis and trans refer to the relative positions of the hydroxyl and carboxyl groups in each compound.

5.4. Use of allo

Where only the configuration of the α -chiral center of a naturally occurring α -amino acid has been ascertained and that of a second chiral center is unknown so that names

⁸ It has been customary in amino-acid nomenclature to apply the carbohydrate prefixes according to Anglo-American usage (Rule Carb-8), in which the prefixes refer to a sequence of consecutive but not necessarily contiguous asymmetric groups.

constructed according to 5.1 or 5.2 cannot be assigned, the diastereoisomer is given the same trivial name with the prefix allo. Such diastereoisomers have the same configuration as the "parent" amino acid at α -C and the opposite configuration to that of the parent at the second chiral center. The examples are names that were assigned before the configuration of the second chiral center had been ascertained.

Examples: allo-L-isoleucine; allo-5-hydroxy-L-lysine; allo- β -hydroxy-L-glutamic acid; allo-L-threonine.

Note that the configuration at the α center is ascertained (a) by direct chemical correlation with substances of known configuration, or (b) by determination of absolute configuration by the methods of Bijvoet *et al.* (14, 15), or (c) tentatively, from the results of studies of biological properties, in particular response to either L-amino-acid oxidase or D-amino-acid oxidase, or (d) by examination of the change in optical rotation with change in the acidity of a solution of the substance.

Where a second chiral center is present, it has been customary in the past to designate the first diastereoisomer described as the L- (or D-) amino acid. The second diastereoisomer, when found or synthesized, is then assigned the same name but with the prefix allo. Where choice of the names on these grounds is impossible or inappropriate, such designations as "isomer A" and "isomer B" are frequently employed until the full configurational relationships are known. Alternatively, the symbol ξ (Greek xi) for "unknown configuration" may be used if more precise specification seems desirable, for example, as in the name (2S)-2-amino-5 ξ -hydroxyhexanoic acid, CH₃CHOH(CH₂)₂-CH(NH₂)COOH.

2AA-6. Optical Rotation

Where the configurational relationship of the α -carbon atom has not been established definitively, or where it is desired to emphasize the actual direction of rotation of an enantiomer of known configuration, the direction of rotation in a specified solvent is shown by a plus or a minus sign in parentheses or by the prefixes dextro or levo in lower case italic letters.

Examples: (+)-6-hydroxytryptophan, or dextro-6-hydroxytryptophan; (+)-glutamic acid, or dextro-glutamic acid (for dextrorotatory (in water) L-glutamic acid)

2AA-7. Peptides9

7.1. Construction of Names

Since peptides are, formally, aminoacylamino acids, the products of the condensation of two or more α -amino acids whereby the elements of water are eliminated between the α -carboxyl group of one amino acid and the α -amino group of the adjacent amino acid, they are named with use of the radical names ending in "yl." Thus, if amino acids "X-ine" and "Y-ine" (NH₂-X-COOH and NH₂-Y-COOH) condense in this order, the dipeptide (NH₂-X-CONH-Y-COOH) is named "X-yl-Y-ine." If they condense in the reverse order, the dipeptide (NH₂-Y-CONH-X-COOH) is named "Y-yl-X-ine." Tripeptides and higher oligopeptides are named similarly, *i.e.*, X-yl-Y-yl-Z-ine (or -an or -ic acid).

 $NH_2CH(COOH)(CH_2)_2CONHCH(CH_2SH)CONHCH_2COOH$ γ_{-1} -glutamyl-1-cysteinylglycine

7.2. Use of Prefixes in Peptide Names

The configurational prefixes are placed immediately before the trivial name of each unit, whether radical, residue, or terminal. The prefixes and radical names, with the exception of the achiral glycine or glycyl, are set off from each other by hyphens (6). (But see note following 7.4.)

Examples: L-alanyl-L-leucine, L-alanyl-D-leucine, DL-alanyl-DL-leucine (mixture of four isomers), glycyl-L-alanine, L-alanylglycine, L-leucyl-L-phenylalanyl-L-isoleucylglycine, glycyl-L-leucyl-L-alanine, L-alanylglycyl-L-leucine.

7.3. Order of Names of Residues9

The name of a polypeptide begins with the name of the radical that carries the free α -amino group (NH₂-terminal amino acid) followed in order by the name or names of the residue(s) of the internal α -amino acid(s). The final N-substituted amino acid carries the free carboxyl group (COOH-terminal amino acid). Formulas are usually written according to the same pattern, the NH₂-terminal at the left and the COOH-terminal at the right. The formula of reduced glutathione is written

7.4. Names of Simple Polymers of \alpha-Amino Acids

Simple polymers of amino acids may, if preferred, be named with prefixes indicating the number of amino-acid units involved. More complex polymers are referred to as polyglycine, poly(L-lysine), etc. (7).

Examples: glycylglycylglycine may be named triglycine, but not (diglycyl)glycine; L-leucyl-L-leucyl-L-leucyl-L-leucine may be named tetra-L-leucine, or tri-L-leucyl-L-leucine.

Note: Although the units in a peptide chain—usually in abbreviated form—are usually separated by hyphens, it is necessary to use arrows when formulating a cyclic peptide, the arrow being pointed from the carboxyl of one unit to the amino group of the unit attached to that carboxyl group (6).

7.5. Conformation of Polypeptide Chains

Abbreviations and symbols recommended by CBN³ for the description of the conformation of polypeptide chains may be found in *J. Mol. Biol.* 55, 299 (1970), *Biochemistry* 9, 3471 (1970), and elsewhere.

References

- (1) Vickery, H. B., and Schmidt, C. L. A. (1931), Chem. Rev. 9, 169.
- (2) Vickery, H. B. (1972), Advan. Protein Chem. 26, 82.
- (3) Vickery, H. B. (1947), J. Biol. Chem. 169, 237.
- (4) IUPAC, Definitive Rules for the Nomenclature of Amino Acids, (1960), J. Amer. Chem. Soc. 82, 5575.
- (5) Addendum to ref 4 (H. B. Vickery) (1963), J. Org. Chem. 28, 291.
- (6) IUPAC-IUB, Symbols for Amino-Acid Derivatives and Peptides (1972), J. Biol. Chem. 247, 977; (1972), Biochim. Biophys. Acta 263, 205; and elsewhere.
- (7) IUPAC-IUB, Abbreviated Nomenclature of Synthetic Polypeptides (1972), *Biochem. J. 127*, 753; (1972) *Arch. Biochem. Biophys. 151*, 597; and elsewhere.
- (8) IUPAC, Rules for the Nomenclature of Organic Chemistry, Sections A, B, and C (1971), Butterworths, London (Section C-421 in particular).
- (9) IUPAC, Rules for the Nomenclature of Organic Chemistry, Section E, Fundamental Stereochemistry

References continue following Appendix B.

⁹ More comprehensive recommendations for naming peptides, including the use of symbols and prefixes, are to be found in ref 6 and 7.

Structure	Trivial name	Biochemical Name(s)°	Systematic Name(s) or Other Names
NH ₂ CH ₃ CH ₄ +SCH,CH(NH,ACO,H	${\bf Abrine}^b \\ S{\bf -Adenosylmethionine}$	N^{α} -Methyltryptophan $S-(5'-Deoxy-5'-adenosyl)$ methionine	S-5'-[(3-Amino-3-carboxypropyl)-methylsulfonio]-5'-deoxyadenosine
- T - T - T - T - T - T - T - T - T - T			
HO OH HOH,C	Agaritine	N^5 -[4 -(Hydroxymethyl)anilino]glutamine	Glutamic $5-\{[2-(4-hydroxymethyl)phenyl]-hydrazide\}$
HONCH, CH(NH ₂)COOH	eta-Alanine ^{4, b} Alanosine	3-(Hydroxynitrosamino)alanine	3-Aminopropionic acid 2-Amino-3-(hydroxynitrosamino)pro-
NH2CONHCH2CH(NH2)COOH CH2—CHCH5CH(NH3COOH	Albizzine Alliin	3-Ureidoalanine S-Allylcysteine S-oxide	2-Amino-3-ureidopropionic acid 3-(Allylsulfinyl)alanine
	Alloenduracididine ^b Allohydroxylysine ^b	$(2R)$ -Enduracididine Allo-5-hydroxy- $_{\mathtt{Ls}}$ -lysine	threo -5-Hydroxy- L_{18} -lysine; (5S)-5-
	${\bf Allohydroxyproline^b}$	Allo-4-hydroxy- r_s -proline	threo-4-Hydroxy-L _s -proline; cis-4-hy-droxy-L-proline; (4S)-4-hydroxy-L-
	Alloisoleucine ^b Allokainic acid ^b	Allo-r _s -isoleucine (See kainic acid)	proline threo- ₁₂ -Isoleucine
O=CH(CH,),CH(NH,)COOH	All other sine b	Allo- _{Ls} -threonine 6-Oxonorleucine	(2S,3S)-Threonine 2-Aminoadipaldehydic acid
N — CH, CHCOOH	Anserine	π -Methylcarnosine; N^{α} -(β -Alanyl)- π -methylhistidine	N^{α} -(3-Aminopropionyl)- π -methylhistidine
О СН,СН(ИН,ХООН	Anticapsin	3-(2,3-Epoxy-4-oxocyclohexyl)alanine	α -Amino-5-oxo-7-oxabicyclo[4.1.0]-heptane-2-propionic acid
НООССИ, СНИНС(ИН)ИН(СН ₂),СН(ИН ₂)СООН СООН	Argininosuccinic acid	N^{ω} -(1,2-Dicarboxyethyl)arginine	N - $[[(4$ -Amino-4-carboxybutyl)amino]-iminomethyl $]$ aspartic acid a
N_2 CHCO ₂ CH ₂ CH(NH ₂)COOH	Azaserine	O³-(Diazoacety1)serine	3-[(Diazoacetyl)oxy]alanine; serine diazo-acetate ester
нум—син(сн ₂), оросн, сноон 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	Bonellidine	N^2 - $(\gamma$ - A sparty1)lombricine	N-(1-Carboxy-2-hydroxyethyl)asparagine 2-guanidinoethyl hydrogen phosphate (ester)
о 45 47 19 19 19 19 19 19 19 19 19 19 19 19 19	Butyrine ^{4,b} Canaline		2-Aminobutyric acid 2-Amino-4-(aminooxy)butyric acid

Structure	Trivial name	Biochemical Name(s) ^c	Systematic Name(s) or Other Names ^d
H,NCNHOCH,CH,CH(NH,,COOH	Canavanine	N^{ω} -Amidinocanaline	2-Amino-4-(guanidinooxy)butyric acid
ИН НООССН,СНИИСИЧОСИ,СН,СИПИ,КООН НООССН,СИМИСИЧСКИЙ ИНДОСТИТИТЕЛЬНИЕМ ИЗВЕТИТЕЛЬНИЕМ ИЗВЕТИТЕЛ	Canavaninosuccinic acid	$N^{\omega}(1,2\text{-Dicarboxyethyl})$ can avanine	$\{N-[(3-Amino-3-carboxypropoxy)amino]-iminomethyl\}asnaric acid$
Ě	Capreomycidine	2-(Hexahydro-2-iminopyrimidin-4-yl)- glycine; deoxytuberactidine	α-Aminohexahydro-2-imino-4- pyrimidineacetic acid
N NHOWH	Carnosine	N^{α} -(β -Alanyl)histidine	N^{α} -(3-Aminopropionyl)histidine
H,O CH ₂ HOOCHC, CH ₂	Chondrine		3-Thiomorpholinecarboxylic acid 1-oxide; tetrahydro-2H-1,4-thiazine-3-carboxylic acid 1-oxide
$egin{array}{cccc} H_2NCH_2CH_2PO_3H_2 & & & & & & \\ H_2NCONH(CH_2)_3CH(NH_2)COOH & & & & & & \\ & & & & & & & \\ & & & & $	Ciliatine ^a Citrulline Cucurbitine	N^5 -Carbamoylornithine	(2-Aminoethyl)phosphonic acid 2-Amino-5-ureidovaleric acid 3-Amino-3-pyrrolidinecarboxylic acid
1,0 CH2 H,CHC,N CHCOOH	Cycloalliin	5-Methylchondrine	5-Methyl-3-thiomorpholinecarboxylic acid 1-oxide
HO ₃ SCH ₂ CH(NH ₂)COOH HOOCCH(OH)CH ₂ SO ₂ CH ₂ SCH ₂ CH(NH ₂)COOH	Cycloserine ^b (oxamycin) Cysteic acid Dichrostachinic acid	3-Sulfoalanine S-[(2-Carboxy-2-hydroxyethylsulfonyl)- methyl]cysteine	4-Amino-3-isoxazolidinone
но————Сн _, сн(мн _, коо)н	Dityrosine	3,3'-Bityrosine	
ноос сн., Сн.сн.сн.—сн.с.,сн.соон Н.с., снсоон Н.с., снсоон	Domoic acid	3-(Carboxymethyl)-4-(2-carboxy-1-methyl-1,3-hexadienyl)proline	
(CH ₃)C=CHCH; CH ₂ CHCH ₃)CH=CH; (CH ₃)CH=CH; (CH ₃)CH=CH;	Dopa [»] Echinine	(3,4-Dihydroxyphenyl)alanine 5,7-Bis(3-methyl-2-butenyl)-2-(1,1- dimethylallyl)tryptophan	
NH CH,CH(NH,JCOOH	Enduracididine	2-Aminodihydrohistidine (tautomer)	α -Amino-2-imino-4-imidazolidine- propionic acid
CH3CH2SCH2CH(NH2)COOH	Ethionine	S-Ethylhomocysteine	

$HOCH_2CH_2C(CH_3)_2SCH_2CH(NH_2)COOH$ H_C C CH_3	Felinine Furanomycin	S-(3-Hydroxy-1,1-dimethylpropyl)cysteine 2-(2,5-Dihydro-5-methyl-2-furanyl)glycine	
HO(CH ₂),CHCH ₂ ,CH(NH ₂)COOH	Fusarinine	N^5 -Hydroxy - N^5 -(5-hydroxy -3-methyl-2-pentenoyl)ornithine	2-Amino -5 - $[N-hydroxy-N-(5-hydroxy-3-methyl-2-pentenoyl)$ amino]valeric acid
H,NCNHCONH(CH,),CH(NH,)OOOH 	Gigartinine	N^{ω} -Amidinocitrulline; N^{5} -(amidino-carbamoyl)ornithine	5-(3-Amidinoureido)-2-aminovaleric acid
HOOCCH(NH ₂)(CH ₂) ₂ CONHCH(CH ₂ SH)CONHCH ₂ COOH OCHN(OH)CH ₂ COOH	Glutathione Hadacidin ^a	N - $(N$ - γ -Glutamylcysteinyl)glycine N -Formyl- N -hydroxyglycine	
	Hippuric acid^b	$N ext{-Benzoylglycine}$	
H,NCNH(CH,)COOH	Homoarginine	N^6 -Amidinolysine	2-Amino-6-guanidinohexanoic acid
N NHOO(CH ₂)NH ₂	Homocarnosine	N^{α} -(4 -Aminobutyryl)histidine	
H ₂ NCONH(CH ₂),CH(NH ₂)COOH HSCH ₂ CH ₂ CH(NH ₂)COOH	Homocitrulline Homocysteine Homoisoleucine ^b	N^6 -Carbamoyllysine	2-Amino-6-ureidohexanoic acid 2-Amino-4-mercaptobutyric acid 9-Amino-4-metrulbanoic acid
CH ₃ S(CH ₂) ₃ CH(NH ₂)COOH HOCH ₂ CH ₂ CH(NH ₂)COOH	Homomethionine Homoserine	5-(Methylthio)norvaline	2-Amino-4-metry mexanoic acid 2-Amino-5 -(metrylthio)valeric acid 2-Amino-4-hydroxybutyric acid
НОНС——СН Н,С∕_N СОООН Н	Hydroxyminaline	2,3-Didehydro-4-hydroxyproline	4-Hydroxy-2-pyrroline-2-carboxylic acid
H,C—CH, H,C, CHCOOH	Hygric acid	N-Methylproline	
CH ₂ CH ₂ CH ₂ CH ₃ CH ₄ CH ₂ CH ₃ CH ₄	Hypoglycin A	3-(2-Methylenecyclopropyl)alanine	lpha -Amino-2-methylenecyclopropanepro- nionic acid
HO ₂ SCH ₂ CH ₂ NH ₂	Hypotaurine"		2-Aminoethanesulfinic acid
HC —— CCH(NH, COOH O—— CH N O O—— CH H	Ibotenic acid	2-(3-Oxo-4-isoxazolin-5-yl)glycine	α -Amino-3-oxo-4-isoxazoline-5-acetic acid
H,NCCH,A,CH(NH,ZCOOH	Indospicine		6-Amidino-2-aminohexanoic acid
$HO \longrightarrow CH_2CHRNH_3XCOOH$	Iodogorgoic acid	3,5-Diiodotyrosine	
СН ₂ СН(СООН)СН ₂ SCH ₂ CH(NH ₂)СООН H ₂ N(CH ₂) ₃ CH(NH ₂)CH ₂ COOH	Isobuteine Isolysine $^a(\beta$ -lysine)	S-(2-Carboxypropyl)cysteine	3-[(2-Carboxypropyl)thio alanine 3,6-Diaminohexanoic acid

Structure	Trivial name	Biochemical Name(s) ^c	Systematic Name(s) or Other Names ⁴
(CH ₃) ₂ CHCH(COOH)SCH ₂ CH(NH ₂)COOH	Isovalthine Isowillardine	S-(1-Carboxy-2-methylpropyl)cysteine 3-(Uracil-3-yl)alanine	$lpha$ -Amino -3,6 -dihydro -2,6 -di ∞ o -1(2 H) - pyrimidinepropioni c acid
носо-кратического носо-кратического носо-кратического носо-кратического носо-кратического нестранического наста О	Kainic acid	3-(Carboxymethyl)-4-isopropenylproline	2-Carboxy-4-isopropenyl-3-pyrrolidine-acetic acid
H COCH,CH(NH,)COOH NH,	Kynurenine	3-Anthraniloylalanine	
$(CH_3)_3N^*(CH_2)_4CH(NH_2)COO^*$	Laminine	N^6 -Trimethyllysine; N^6 -trimethyllysine	2-Amino-6-(trimethylammonio)hexanoate
$CN(CH_2)_2NHCO(CH_2)_2CH(NH_2)COOH$	Lathyrus factor	N^5 -(2-Cyanoethyl)glutamine	
H, NC NCH, CHRNH, J, COOH	Lathytine (tingitanine)	3-(2-Amino-4-pyrimidiny I) alanine	lpha, 2-Diamino-4-pyrimidinepropioni c acid
HO————————————————————————————————————	Leucenol (mimosine)	3-[3-Hydroxy-4-oxo-1(4H)-pyridinyl]-alanine	
H. H. NCNH(CH.), OPOCH, CH(NH.), COOH N. OOH	Lombricine	O^3 -(2-Guanidinoethoxy) phosphinicoserine	
	β -Lysine ^b (see iso-lysine)		
Н _. МСП _{.Э,} СВ(МВ)СООН Н,ССВСООН	Lysopine	N^2 -(1-Carboxyethyl)lysine	
	Mimosine ^{b} (see leu-		
HC — (1H HC CCCOH HC	Venot) Minaline	Tetradehydroproline	2-Pyrrolecarboxylic acid
HC CTI(NH,COOH	Muscazone	3-(2-Oxo-4-oxazolin-5-yl)glycine	lpha -Amino-2-oxo'-4-oxazoline-5-acetic acid
Н ₂ ИСЛИН)ИНСП ₂ ЪСНСООН ИНСИ(СООНСЭГСИДООН	Nopaline	N ² -(1,3-Dicarboxypropyl)arginine; N- (1-carboxy-4-guanidinobutyl)glutamic	
HOOCCH(NH2)(CH2)2CONHCH(CH3)CONHCH2COOH	Norleucine ^b Norophthalmic acid	N - $[N$ - γ -Glutamylalanyl)glycine	2 - Aminohexanoic acid N ⁵ -[1-((Carboxymethyl)carbamoyl)ethyl]- glutamine
Ë	Norvaline ^b Octopine	N^2 -(1-Carboxyethyl)arginine	2-Aminovaleric acid
NH NHCH(CH ₂)COOH H,N —(CH ₂)CHCOOH NHCH(CH ₂)COOH	Octopinic acid	N^2 -(1-Carbox yethyl) or mithine	

CH,CHCOOH)NHCOCH,CH2,NH2, NC, NH CH1,	Ophidin	2-Methylcarnosine; N^{α} - $(\beta$ -alanyl)-2-methylhistidine	
CH_1 CH_2 CH_3 CH_4 $COOH$	Orcylalanine	(2,4-Dihydroxy-6-methylphenyl)alanine	
$H_2N(CH_2)_3CH(NH_2)COOH$ $C_H_3CONHICCH_{JACHCOOH}$ $NHCOC_{JH_2}$	Ornithine Ornithuric acid	5-Aminonorvaline N^2, N^5 -Dibenzoylornithine	2,5-Diaminovaleric acid
	Oxamycin ^b (see cyclo-serine)		
носснонснуснин, коон	Oxypinnatanine	N^5 -[2,5-Dihydro-3-(hydroxymethyl)-2-furanyl]-4-hydroxyglutamine	
HOCH ₂ C(CH ₃) ₂ CH(NH ₂)COOH	Pantonine	3,3-Dimethylhomoserine	2-Amino-4-hydroxy-3,3-dimethylbutyric
$\mathrm{HOCH_2C}(\mathrm{CH_3})_2\mathrm{CHOHCONH}(\mathrm{CH_2})_2\mathrm{COOH}$	Pantothenic acid ^a	N -Pantoyl-(β -alanine); 3-pantoamido-	acid $N-(2,4$ -Dihydroxy-3,3-dimethylbutyryl)-
$(CH_3)_2C(SH)CH(NH_2)COOH$	Penicillamine	propionic acid 3-Mercaptovaline; 3,3-dimethylcysteine	$(\beta$ -alanine) 2-Amino-3-mercapto-3-methylbutyric
C ₆ H ₅ CH ₂ CONHCH ₂ COOH	Phenaceturic acid	N-(Phenylacetyl)glycine	aciu
$\langle \bigcirc \rangle$ — CONHCH, COOH	Picolinuric acid	N-Picolinoylglycine; N-(2-pyridylcar-bonyl)glycine	
н,С=СН—С=СНЛНСОСНОИСН,СН(NН,)ОООН СН,ОН	Pinnatanine	4-Hydroxy-N ⁵ -[2-(hydroxymethyl)-1,3-butadienyl]glutamine	
	Piperidinic acid ^{a,b}		4-Aminobutyric acid
H,C——CH ₂ O==C,N_CHCOOH H H	Pyroglutamic acid	5-Oxoproline; 5-pyrrolidone-2-car-boxylic acid	5-Oxopyrrolidine-2-carboxylic acid
N—CHCOHXCOOH H,NC,N,CH, CH,NH, H	${ m Roseanine}^a$		3-Amino-2-(2-amino-2-imidazolin-4-yl)-2-hydroxypropionic acid; 2-amino- α -(aminomethyl)- α -hydroxy-2-imidazolline-4-acetic acid
$HOOC(CH_2)_2CH(COOH)NH(CH_2)_4CH(NH_2)COOH$	Saccharopine	$N-(5-Amino-5-carboxypentyl)$ glutamic acid; N^6 -(glutar-2-yl)lysine	2-Amino-6-[(1,3-dicarboxypropyl)amino]- hexanoic acid
$(CICH_iCH_i)_iN$ — $(CICH_iCH_i)_iCOOH$	Sarcolysine	4- Bis(2-chloroethy1)amino]pheny1- alanine	
	$Sarcosine^b$	N-Methylglycine	
CH,CH(NH,X300H	Stizolobic acid	3-(6-Carboxy-2-pyron-4-y1)alanine	α -Amino-6-carboxy-2-oxo-2 <i>H</i> -pyran-4-propionic acid
HOOC O CO	Stizolobinic acid	3-(6-Carboxy-2-pyron-3-yl)alanine	α -Amino-6-carboxy-2-oxo-2 H -pyran-3-
HOO. U - U	$Surinamine^b$	N-Methyltyrosine	propionic acia

Structure	Trivial name	Biochemical Name(s) ^c	Systematic Name(s) or Other Names ^d
$HOOCCH(NH_2)(CH_2)_2CH(OH)CH(NH_2)COOH$	Tabtoxinine	4-(Alanin-3-yl)threonine; 4-(2-amino-	2,6-Diamino-3-hydroxyheptanedioic acid
H2NCH2CH2SO3H	Taurine ^a	2 - C41 DOA y CLII y 1 JUII COIIII E	2-Aminoethanesulfonic acid
H ₂ NCNH(CH ₂ λ OP (O ₂ H)XOCH ₂ CH(COOH)N(CH ₁) ₂ NH	Thallasemine	N^2, N^2 -Dimethyllombrocine	N,N -Dimethylserine 2-guanidinoethyl hydrogen phosphate (ester); N,N -dimethyl- O^3 -[(2-guanidinoethoxy)phosphiricolearine
C ₂ H ₅ NHCOCH ₂ CH ₇ CH(NH ₂)COOH HC ———————————————————————————————————	Theanine Thiolhistidine	N^5 -Ethylglutamine ${f 2-Mercaptohistidine}$	
SH S——СН H,CCH(ОНОСИНСИ———СН —————————————————————————————	Thiostreptine		2-(1-Amino-2,3-dihydroxy-2-methylbutyl)- 4-thiazolecarboxylic acid
но С С С С С С С С С С С С С С С С С С С	Thyronine	4-(4-Hydroxyphenoxy)phenylalanine	O^4 - (4-Hydroxyphenyl) tyrosine
HO CH,CH(NH,COOH	Thyroxin	3,5,3',5'-Tetraiodothyronine	O^4 -(4-Hydroxy -3,5-diiodophenyl)-3,5-diiodotyrosine
-	Tingitanine ^b (see lathytine)		
H ₂ O——СНСН(NH ₂)СООН О——С — Н Н	Tricholomic acid	2-(3-Oxo-5-isoxazolidinyl)glycine	lpha -Amino-3-oxo-5-isoxazolidineacetic acid
НО——СНДСИ(ИНДОООН			
HO — CH ₂ CH(NH ₂)СООН	${\rm Trityrosine}^{\it o}$	3,3';5',3"-Tertyrosine	
HN H HN -CH(NH ₃)COOH	Tuberactidine	2-(Hexahydro-6-hydroxy-2-iminopyri- midin-4-yl)glycine; 6-hydroxycapreo- mycidine	lpha -Aminohexahydro-6-hydroxy -2-imino-4-pyrimidineacetic acid
H,C——CH,2 H,CHOOH)	m-Tyrosine ^{b} Viomycidine	(3-Hydroxyphenyl)alanine 1,5-Didehydro-5-guanidinoproline	2-Guanidino-1-pyrroline-5-carboxylic
N H C=0 HC N C=0 HC N C=0 HC N C=0	Willardine	3-(Uracil-1-yl)alanine	lpha -Amino-3,4-dihydro-2,4-dioxo-1(2 H)-pyrimidinepropionic acid

Footnotes to Appendix A: a Some amino acids that are not α -aminoalkanoic acids are included; their trivial names are so marked. No D-amino acids are included, hence L has been omitted from the names. No α -betaines are included. b Indicates no structure is given. c "Biochemical names" are based on the names of amino acids defined in this document, and attempt thereby to indicate biochemical relationships as far as possible. d Systematic or other names avoid the use of names not included among the most common α -amino acids (Table I) and avoid the radical-prefix names described in Recommendation $2AA-1.4.4.^e$ As this name implies tyrosyltyrosyltyrosine, tertyrosine (column 3) should be used.

Name [Symbol]	Systematic Names	Formula
B1. Two α	Amino Acids Connected by S or S-S or S-CH ₂ -S	
Cystine (Cys) ₂ ;Cys Cys	2,2'-Diamino-3,3'-dithiobis (propionic acid) 3,3'-Dithiobis (2-aminopropionic acid) 3,3'-Dithiodialanine	SCH ₂ +CH(NH ₂)COOH SCH ₂ +CH(NH ₂)COOH
Homocystine (Hcy) ₂ ;Hcy Hcy Hcy	2,2'-Diamino-4,4'-dithiobis (butyric acid) 4,4'-Dithiobis (2-aminobutyric acid)	S(CH ₂) ₂ + S(CH ₂) ₂ +
Cystathionine Ala; Hcy (Ala) Hcy	S-(Alanin-3-yl)homocysteine S-(2-Amino-2-carboxyethyl)homocysteine 2-Amino-4-[(2-amino-2-carboxyethyl)thio]- butyric acid	$S \stackrel{CH_2}{\longleftarrow}$
Lanthionine Cys (Ala); Ala Cys	S-(Alanin-3-yl)cysteine S-(2-Amino-2-carboxyethyl)cysteine 2,2'-Diamino-3,3'-thiobis(propionic acid)	SCH ₂ +
Methyllanthionine Cys (3MeAla);3MeAla Cys_	2-Amino-3-[(2-amino-2-carboxyethyl)thio]-	SCH+
Homolanthionine [Hcy(Abu)]	2,2'-Diamino-4,4'-thiobis(butyric acid) 4,4'-Thiobis(2-aminobutyric acid)	$S \stackrel{(CH_2)_2}{\longleftarrow}$
Djenkolic acid [Cys ₂ (CH ₂)]	3,3'-Methylenedithiobis(2- aminopropionic acid) 3,3'-(Methylenedithio)dialanine Methylenebiscysteine	S—CH ₂ + S—CH ₂ +
B2. Lysinon	orleucines: ^α Two α-Amino Acids Connected by N	
Lysinonorleucine $[ext{Lys}(\omega ext{Nle})] \ [ext{HN}(\omega ext{Nle})_2]$	6- $(N^6$ -Lysino)norleucine N^6 - $(Norleucin-6-yl)$ lysine N^6 - $(5-Amino-5-carboxypentyl)$ lysine Bis $(6-norleucin-6-yl)$ amine	CH2CH2+(CH2)2CH(NH2)COOH
, 5-Hydroxy- [o ⁵ Lys(ωNle)]	6- $[N^6$ - $(5$ -Hydroxylysino)]norleucine N^6 - $(5$ -Hydroxynorleucin- 6 -yl)lysine 5-Hydroxy- N^6 - $(norleucin-6-yl)lysineN^6-(5-Amino-5-carboxypentyl)-5- hydroxylysine$	CH,CH,-
, 5,5'-Dihydroxy- $[o^5Lys(o^5\omega Nle)]$ $[NH(o^5\omega Nle)_2]$	5-Hydroxy-6-[N ⁶ -(5-hydroxylysino)]- norleucine 5-Hydroxy-N ⁶ -(5-hydroxynorleucin-6-yl)- lysine N ⁶ -(5-Amino-5-carboxy-2-hydroxypentyl)- 5-hydroxylysine	CH ₂ CHOH+
, N^6 :6'-Dehydro- $\left[\Delta^6 ext{Lys}\left(\omega ext{Nle} ight) ight]$	6-(\Delta^6-Lysino)norleucine N^6-(Norleucine-6,6-diyl)lysine N^6-(5-Amino-5-carboxypentylidene)- lysine	NCH ₂ CH ₂ +
$N^6:6'$ -Dehydro-5-hydroxy- $\left[\Delta^6\mathrm{Lys}(\mathrm{o}^5\omega\mathrm{Nle}) ight]$	5-Hydroxy-6-(Δ^6 -lysino)norleucine N^6 -(5-Hydroxynorleucin-6-yl)- Δ^6 -lysine N^6 -(5-Amino-5-carboxypentylidene)- 5-hydroxylysine	N CHCH2 +
$\left[\Delta^6 \mathrm{o}^5 \mathrm{Lys}(\omega \mathrm{Nle}) ight]$	$6-[\Delta^6-(5-Hydroxylysino)]$ norleucine $5-Hydroxy-N^6-(norleucin-6-yl)-\Delta^6-lysine$ $N^6-(5-Amino-5-carboxy-2-hydroxypen-tylidene)$ lysine	NCH2CH2+

Name [Symbol]	Systematic Names	Formula
$N^6:6'$ -Dehydro- $5,5'$ -dihydroxy- $\left[\Delta^6 o^5 \mathrm{Lys}(o^5 \omega \mathrm{Nle}) ight]$	5-Hydroxy-6- $[\Delta^6$ -(5-hydroxylysino)]- norleucine 5-Hydroxy- N^6 -(5-hydroxynorleucin- 6-yl)- Δ^6 -lysine N^6 -(5-Amino-5-carboxy-2- hydroxypentylidene)-5-hydroxylysine	CH,CHOH+
B3. Allysines: Two (or M	More) Six-Carbon $lpha$ -Amino Acids Connected by a Car	bon-Carbon Bond
Allysine aldol [(All) ₂] Di(allysine)	5-(6-Hydroxynorleucin-6-yl)-6-oxonorleu- cine* 6-Hydroxy-6-(6-oxonorleucin-5-yl)norleu- cine 2,10-Diamino-5-formyl-6-hydroxyunde- canedioic acid	HOCHCH ₃ +(CH ₂) ₃ CH(NH ₂)COOH OCHCH+(CH ₂) ₃ CH(NH ₂)COOH
Dehydro(allysine aldol)[$\Delta(All)_2$] Δ^5 -(Allysine aldol)	2,10-Diamino-5-formyl-5-undecenedioic acid	CHCH ₂ OCHC
Syndesine [o(All) ₂] Hydroxy(allysine aldol)	(2,10-Diamino-5-formyl-6,7-dihydroxyun-decanedioic acid	носненон /
Hydroxy(diallysine) Hydroxyallysine-allysine	2,10-Diamino-5-formyl-5,6-dihydroxyun- decanedioic acid	HOCHCH ₂ OCHCOH
Syndesinol [o(All) ₂ H ₂] Reduced syndesine Syndesine alcohol	2,10-Diamino-5,6-dihydroxy-7-(hydroxy-methyl)undecanedioic acid	носнснон /
Dihydroxydi(allysine)	2,10-Diamino-5,6-dihydroxy-5-(hydroxy-methyl)undecanedioic acid	HOCHCH ₂ + HOCH ₂ CHOH-
Merodesmosine	2,10-Diamino-5-{[(5-amino-5-carboxy-pentyl)amino]methyl}-6-undecenedioic acid	$\begin{array}{cccc} CH = CH & & & H \\ CH_2 = CH & & or & N \\ NH(CH_2)_2 & & & (CH_2)_2 \\ & & & & & & & \\ \end{array}$
Desmosine	4-(4-Amino-4-carboxybutyl)-1-(5-amino-5-carboxypentyl)-3,5-bis(3-amino-3-carboxypropyl)pyridinium	$CH_2 - R$
Isodesmosine	2-(4-Amino-4-carboxybutyl)-1-(5-amino-5-carboxypentyl)-3,5-bis(3-amino-3-carboxypropyl)pyridinium	$ \begin{array}{cccc} R & & & & & & \\ & & & & & & \\ & & & & & &$

^a For definition of lysino and norleucin-6-yl, see Section 1.4. ^b Allysine is difined in Appendix A as 6-oxonorleucine. ^c R = $(CH_2)_2CH(NH_2)COOH.$

(Tentative Rules) (1970), J. Org. Chem. 35, 2849; (1970) Biochim. Biophys. Acta 208, 1.

- (10) Cahn, R. S., Ingold, C., and Prelog, V. (1966), Angew. Chem., Int. Ed. Engl. 5, 385, 511.
- (11) Cahn, R. S., Ingold, C., and Prelog, V. (1966), Angew. Chem. 78, 413; (1956) Experientia 12, 81.
- (12) Cahn, R. S. (1964), J. Chem. Educ. 41, 116.
- (13) IUPAC-IUB, Tentative Rules of Carbohydrate Nomenclature (1972), Biochemistry 10, 3983; (1972) Eur. J. Biochem. 21, 455; and elsewhere.
- (14) Bijvoet, J. M., Peerdeman, A. F., and van Bommel, A. J. (1951), Nature (London) 168, 271.
- (15) Peerdeman, A. F., van Bommel, A. J., and Bijvoet, J. M. (1951), Proc. Acad. Sci. Amsterdam B54, 16.